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ABSTRACT 

A method is given for random sampling which yields a density equal to the ground- 
state wave function for the helium atom. As an intermediate step, a Green’s function 
for the diffusion operator containing the repulsive interaction is sampled. A technique 
for generating a density function proportional to y2 is outlined. Attention is paid to 
the development of estimators with finite variance. Results are shown for the electron 
density and for (re>. The latter agrees well with previous numerical results. 

1. INTRODUCTION 

This report describes an extension of work described earlier [l] on the numerical 
solution by Monte Carlo integration of the Schrodinger equation for few body 
systems. The problem solved is the generation of the “exact” wave function for 
the ground state of atomic helium. The work is intended as an exploration of 
method, since the precision of the results is less than that already achieved for 
helium by a number of existing calculations [2, 3].2 Nevertheless the treatment 

1 The work presented in this paper is supported by the AEC Computing and Applied Mathe- 
matics Center, Courant Institute of Mathematical Sciences, New York University, under Con- 
tract AT(3&1)-1480 with the U.S. Atomic Energy Commission. 

* At the time this work was begun it appeared that a significant discrepancy might exist be- 
tween estimates of <r”> obtained from wave functions that minimize the energy and those obtained 
from a different method due to J.-P. Auffray [4]. In addition there seems to be disagreement [5] 
between experiment and the computational result. However, further development [6] of Auffray’s 
method has removed the deviation between his result and that of Pekeris [2]. 
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of the singular (Coulomb) potential and the development of a method to esti- 
mate integrals with $ as weight function represent necessary advancements 
toward the solution of more interesting atomic and nuclear problems. For exam- 
ple, it appears that the development of wave functions for ground and first ex- 
cited states of the hydrogen molecule are straightforward extensions of the helium 
work. 

2. WAVE FUNCTION ITERATION 

Let us review the general approach as discussed in the earlier paper [I]. For 
convenience suppose the energy is fixed as 

E=-B (1) 

and replace the physical coordinates xi of particle i by ri where 

rd = (~Ac~~B/J~~)~/~x~ (2) 

and the potential V by W: 

Wl 9 * * .,xN)= -ABW(r,,r, ,..., rN)=-jlBW(R). (3) 

The Schrodinger equation is then 

(- P2 + l)yr(R) = ~W(Wly(W. (4) 

As discussed in [I], the development of a square-integrable I+J requires that 
we use G,,, the Green’s function of - V2 + 1 which vanishes at infinity, and 
write 

Explicitly, 

y(R) = A J~R'G,(R', R)w(R')~(R'). (5) 

Go(%, R) = @7G-“‘2 I R - Ro 11-M’2K~,2-1( I R - Ro I), (6) 

where M is the number of dimensions (M = 3iV) and K,(z) is the Bessel function 
of imaginary argument. 

As explained in [l], GO may be regarded as the step-length distribution of a 
random walk. Then if ly(R') is used as a density function for a set of points; if 
these points are multiplied according to the weight function3 W(R’); and if then 
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new points R are chosen according to the density function G,(R’, R), the points 
R have the distribution given by the integral on the right side of (5). Repetition 
of this procedure is equivalent to iteration of the Eq. (5) and converges to 
that state for which L is smallest. 

For the helium atom 

and is sometimes negative. Now this is not necessarily fatal to the integration of 
the right side of (5). It is certainly possible to use a negative value of W. In the 
iteration, this means carrying along a sign which is changed when W < 0. If this 
is done, then 1 W 1 is used for the multiplication. Now the iteration converges so 
that the density of points developed-ignoring the sign-is that of the lowest 
state with 1 W 1 as potential. Any component of a higher state, such as the true 
ground state of W, decays away. Thus although the signed density of points may 
represent the desired state, it eventually becomes very difficult if not impossible 
to see it4 in the presence of the random fluctuations. 

2.1 Green’s Function Iteration. 

A way around this difficulty would exist if the Green’s function were found 
which contains all of the repulsive interaction. That is, write 

w= w+- w- (8) 

with W, , W- 2 0. 
The Green’s function in question is the solution 

(- V2 + 1 + W-)G(R’, R) = 6(R’ - R). (9) 

Using G, the integral equation for w  is 

3 That is, extra identical points are created, if necessary, so that, on the average, W(R’) points 
at R’ are treated in the subsequent calculation. 

4 If  the iteration is carried out with an artificial eigenvalue, A’, which is sufficiently large, then 
as the sample of points grows, the statistical error will remain smaller than the component of the 
W ground state. But this means that the computational effort required to improve any estimate 
by a fixed amount grows exponentially. Since, in addition, it is usually necessary to carry out 
some preliminary iterations before the ground-state distribution is established, it seems that this 
possibility does not help much. If  it is known that the two eigenvalues (corresponding to I W 1 
and to W) do not differ much, then it may be very useful. 
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y(R) = JG(R', R)W+(R')y(R')dR'. (10) 

The random walk treatment can be applied provided points with density G(R’, R) 
for fixed R’ can be supplied and if W+ is used for the multiplication of points. 

We may set 
W- = ez/rlz . 

With this choice, the Green’s function (or its analytic continuation) has been 
discussed by several authors [7-91. 

An attempt was made to find a convenient rapid computational scheme based 
on the analytic Green’s function, but without success. Instead the expansion of 
the Green’s function in terms of the unperturbed Green’s function was carried 
out. If we move the term W-G of (9) to the right side of the equation and use G, , 
the following results : 

G(R', R,) = G,(R', R,) - J We(R")G(R', R")G,(R", R)dR". (11) 

Such an equation may be solved by random sampling-if the process converges- 
to give a set of points having density G. The points may then be used to integrate 
the equation for VJ. Unfortunately the fact that the integral in (1) has a negative 
sign means that the points developed in this way frequently have a negative sign, 
which is precisely what was to be avoided. Since G itself is always positive it 
should be possible to achieve a large cancellation of opposite contributions. 
Such cancellation may be carried out conveniently using an iterated form of (11). 
Apply the operator (- V2 + 1 - W-(R)) to both sides of (11). The result is 

(- P + l)G(R’, R) = 6(R - R’) - W-(R)G,(R’, R) 

+ W-(R) 1 W-(R”)G(R’, R")G,(R", R)dR". 

The use of G, as Green’s function for (- P + 1) now gives 

GW, R) = G,(R', R) - @,(R', R,)W-(R,)G,(R,,R)dR, 

+ j-.f W', RI) W-U'W,(R, > R,) W-(R,)G,(R, > WWR, . 
(12) 

This equation may also be solved by random sampling. 
Suppose first that the “source” term 

S(R', R") = G,(R', R") - JG,(R', R,) W-(R,)G,( RI, R")dR, (13) 

may be sampled to give a point R”. Then, on the average W-( R”) times, let a step 
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be taken to Rz using Go(R”, R,) as kernel; repeat the process using W_(R,) and 

Go(R2 1 RI. 
If we count up the points arriving at R either drawn directly from S(R’, R) or 

else after two steps from some Rr , a density results which satisfies Eq. (12). 

The process given above then describes a sampling procedure for generating points 

whose density is G. Such a procedure, valid for any R’, is needed in generating 

the v according to (10). 
The development of G converges most rapidly when II_ is made as small as 

possible. That is, put 

W_(R) = - W(R), when W(R) c 0 

- 0 otherwise. 

W+(R) = W(R), when W(R) 2 0 
(14) 

= 0 otherwise. 

The fact that W_ vanishes outside a certain volume in configuration space presents 

no problem in a calculation of this type. 

The advantage of (12) and the sampling procedure that corresponds to it is 

that the Green’s function iteration requires no sign changes. 

2.2 Singularities of the Integral Equations. 

The preceding discussion requires one essential modification in practice: the 

functions W, are singular, diverging when any one of rl , r2 , or r12 becomes zero. 

The procedure of sampling new points whose number is on the average W(R) 

cannot in general be carried out. 
Let us denote by s, sO, 9 the integral operators whose kernels are G, G, , 

and S, respectively. Equations (13) and (12) correspond to 

and 

When the last equation is used with Eq. (lo), describes the wave function itera- 

tion, the result is 

This equation may be operated upon on the left by W+ and W_ , respectively, 

to give the equations 
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W+Y = W+~(W+y> + W+~,W-~oW-~( W+*), 
w-y = w-Y(W+y) + W-~cJW-~~W_2qw+y). 

The solution of the first of these corresponds to the expansion 

(18) 

(19) 

(20) 

In this form, it is clear that .VO is always preceded by W, ; this factor-or at least 
its singular part-can be combined with the kernel GO to give a “Coulomb modi- 
fied kernel,” Eq. (43) of Appendix A. 

where 

C-W, R) = &;dG(R’, W/r,, , 

A(r) = r[l - exp(r)]-‘. 

(21) 

(22) 

In the same way, the appropriate modified kernel for attractive interactions is 

A(r2’) 
‘+ = A(r,‘) + A(r,‘) 

4rl’WdR’, R) &l’) A(r2’)Go(R’, RI 
rl 1 ’ A@,‘) + A@,‘) r2 I* 

(23) 

The terms in brackets are each of the form taken up in Appendix A, and the coef- 
ficients are such that each may be used as a probability for sampling the cor- 
responding kernel. 

Let W- be replaced by 

and W, by 

W-’ = r,2 W-/A(r;,) (24) 

W+’ = G,(R’, R) W+(R)/C+. (25) 

Denote by ‘8+ and @- the operators whose kernels are C+ and C-, respectively. 
Equation (19) then becomes 

w-y = W-7( W-y) + w-‘S - w-‘@- W-‘&T-( W+y). (26) 

In developing the solution of this equation W-‘, a bounded function, plays the 
role of W- , i.e., is used to determine the extent to which point R is carried fur- 
ther in the wave function iteration. W+ is similarly replaced by the bounded W,‘. 
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2.3 Singularities of the Source Term 

The source term S of Eq. (13) has singularities, both in W- and in the Green’s 
function. These are evaded in a manner analogous to that described above. 

First a point R” is chosen (from a kernel C+(R’, R”) or C-(R’, R”) depending 
upon which iteration is being carried out). Then a point R is generated from the 
kernel 

AtrY) 
D(R I R’, R”) = At,.lr) + Atr;t) 

-4rl’)Go(R’, R) -__ 
r1 1 

A (rl’) A(r;‘)G,(R”, R) 
(27) 

’ A(r,‘)+A(r;‘) rl 
The weight 

w,, = WR’, .“I 
C*( R', R") 

1 _ GtR’, R)W-UW,(R, R”) 
D(R 1 R', R") - W,(R”) (28) 1 

is evaluated numerically. The last term is W+ or W- according as the point is to 
be used in wave function or Green’s function iteration. 1 W” / is used as the ex- 
pected number of points assigned to R". Since W’ is not always positive, a sign 
must be kept, but it was found experimentally that the fraction of points to which 
a negative sign must be given is of the order of 3 x 10-4. This is sufficiently small 
to permit the wave function to be iterated of the order of lo2 without serious loss 
of significance.5 

Note also that the function D used to sample points RI contains the singularities 
of the integrand of S so that the ratio which occurs inside the bracket of (28) is 
bounded. This is essential in the procedure, and in particular in keeping small the 
fraction of negative points. It is worth mentioning that more elaborate procedures 
for integrating (13) within the framework of Monte Carlo could have been used 
if further improvement had been necessary. 

3. ESTIMATION OF I+J~ 

When a function y(R) is sampled repeatedly it is straightforward to obtain 
linear functionals of the form 

<f>, = ~YW~UWR. (29) 

5 It is likely that points with negative signs contribute, on the average, less than others in the 
development of the wave function iteration. After 80 iterations in the numerical work, the neg- 
ative strength grew to a fraction of only 0.002 of the total. 
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Let R1 , Rz , . . . , Ri be the points that turn up in Z independent samples. 
Then, under rather general conditions [lo] the sample average 

converges in probability to the integral (29). In certain applications (e.g., linear 
transport theory), this is the kind of result which is generally sought. 

For computations in which quantum mechanical wave functions are developed, 
primary interest is in functionals of the form 

or in ratios like 

U-h = SI Y(R) WUWR (30) 

s I Y(R) IYWW s I Y’(R) I’dR. (31) 

If, as we suppose, a Monte Carlo solution is most attractive for many dimen- 
sional problems, then quadratic functionals present something of a difficulty: 
it is not possible to tabulate the density y over a mesh in many dimensions and 
then square each result. A method is required, analogous to that for linear func- 
tionals, in which points are used in the estimation of y2 as they appear in the sampl- 
ing for w. 

Fortunately, this is possible when v satisfies an integral equation-as, for 
example Eq. (5): 

y(R)= J-G,(R', R)W(R')y(R')dR'. 

Suppose that the sampling procedure is carried out twice to give independent sets 
(R(l)} and { Rt2)}. Take one point from each set, Ry', Rp), and for any R, form 
the product 

F = W( R~')G,,(R~',R)W(R62')G,(R~', R). (32) 

Let this product be formed for Z pairs of independent points. The expected 
value of the sum of the products is obtained by averaging separately over R(l) 
and R@', using for each the density function I+J: 

(CF)=ZJG,(R (I’, R) W( R”‘)y( R”‘)dRo’ 

x j- Go(Rt2), R)W(R'2')~(R'2')dR'2' (33) 

= A-2Z~2(R). 

In order to obtain integrals over R, we only need to allow R to be varied over 
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the entire space. For example, if R is selected from some density function T(R), 
then the expected value of the sum of I evaluation of 

F = W( R’l’)G,( R(l), R) W( RC2’)G,( Rf2), R)f( R)/T( R) (34) 

is 
(2 F) = P1 j T( R)dR j dR”’ j- dRt2’F 

= 1-21 Jf(R)v2(R)dR 
(35) 

from which (30) can be inferred. By making pairs of estimates of this kind in one 
of which f = 1, the integrals required for (31) may be obtained. The quotient of 
the sums is a biassed estimator for the quotient, but the bias is expected to become 
small as the sampling proceeds. 

This treatment can also be carried out using (lo), the integral equation contain- 
ing the perturbed Green’s function. As a practical matter, this did not seem nec- 
essary since the unperturbed Green’s function is so readily computed and the 
difficulty with negative points does not propagate itself. 

In fact, points were generated in the random walk having densities W+y and 
W-y, as given by Eqs. (18) and (19). For points from both of these, estimator 
(34) is replaced by 

F’ = [f G,(R’l’, R)] [-+G,(R’2’, Wlf(RYW). (36) 

The sign used for each factor is the sign in the W, associated with the point 
R(1) or R(2) 

The singularity of G, naturally somewhat complicates the procedure. The treat- 
ment of this follows the lines of Sections (2.2) and (2.3), and details are deferred 
to Appendix B along with a discussion of other devices used to improve the y2 
calculation. 

The machine computation was set up with 

f(R) = SO-l2 + r2”> (37) 

so as to calculate the mean square radius of the helium atom. In addition, the 
value of (36) was tabulated in a histogram as a function of r1 . This gives the charge 
density of the helium atom as a function of electron radial coordinate. 

It is, of course, possible to obtain a variety of estimates at the same time; the 
extra computation is generally small compared with the time required for the 
random walk and qj2 estimation itself. 
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4. RESULTS 

A computer program was written following the scheme described in the pre- 
ceding sections and in the appendices. A trial function was used which consisted 
simply of a product of hydrogen-like wave functions adjusted to have the right 
(r2). The wave function iteration was carried out, and after 14 such cycles, the 
generation size appeared approximately to have stabilized. The computation of 
(r2) and (1) was performed in 67 additional iterations.6 

Because there is no attempt to stabilize the generation size, it drifted, showing 
correlations in direction for 6-20 iterations. It is reasonable that such long pe- 
riods would be observed since the average size of a “step” in the random walk 
is small compared with the size of the equilibrium distribution. For this reason 
a fluctuation can persist for many generations. At the end of the computation, the 
generation size was very close to the value after 14 iterations. (This is somewhat 
fortuitous; in any case this was not the criterion for termination.) From the 
change in size one might deduce a value of the strength of the interaction required 
to give the correct binding as 1 part in lo4 smaller than the correct value. Esti- 
mating this is of course not the main aim of the calculation but it is reassuring. 

The overall average value of (r2) was, in the units of Eq. (2), 

or using 

(r2) = 6.92,, 

(h2/2mB)1/2 = 0.41496 a.u., 

(r-2) = 1.1930. 

This value agrees very well with the result (r2) = 1.193483 obtained by Pekeris 
[2] or the extrapolated value of 1.1935 given by Scherr and Knight [3]. 

The statistical error of (r2) is somewhat difficult to estimate because of long- 
term correlations in partial average values. By breaking up the run in different 
ways, estimates of relative error (i.e., standard deviation divided by average 
value) of 0.0015-0.004 may be obtained; smaller values derive from divisions 
into two or three separate runs. Much additional computation is needed to clear 
this up. Comparison of average values of partial quotients with overall quotient 

6 In the existing program, the preliminary iterations took about 3 minutes each to follow 
about 20,000 points. Iterations which include the pa evaluation took about 5 minutes. These 
times can be reduced by large factors in future applications by avoiding FORTRAN on the CDC 
6600 (which loses a factor of 3 to 4 in running time in existing compilers) at least for crucial 
subroutines, and by replacing certain sampling procedures by more efficient ones. 
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of (r2)/(1) shows that any bias in the computation is less than 1O-4 on a relative 
basis. 

Figure 1 shows the density of electron (normalized to one) as a function of 
distance from the nucleus. The change in slope shows the effect of increasing 
screening by an inner electron upon the density of an electron far from the nu- 
cleus. 

FIG. 1. Electron density for the helium atom as a function of radial distance from the nucleus, 
normalized to J P(r)rVr = 1. r is given in units of (fi*/2~&3)~‘~ = 0.415 atomic units. 
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The results show that Monte Carlo calculations are indeed feasible for two- 
electron systems. It remains to be seen whether estimates, having the precision 
which can be attained by these methods in more complicated systems, will be 
found useful. 
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APPENDIX A 

Coulomb Modified Kernel 

Let R and R’ be vectors in the full configuration space (six-dimensional for 
the two-electron problem). Let rr be the vector formed from the first three com- 
ponents of R, and r, represent the remaining elements. In the same way form 
rl’, r2’ from the components of R’. As has been shown above, it is necessary to 
select a point R from a p.d.f. C(R’,R) having the form 

C(R’, R) cc ‘- G,(R’, R) = C’(R’, R) . (38) 

We may introduce the integral representation [l l] for the Bessel function used 
in G, to obtain’ 

c’ = (&)-iv/2 y71 
s 

r t-N/Z exp[- t - j R - R’ 12/(4t)] dt . (39) 

Setting 
1 R - R’ I2 = 1 rl - rl’ I2 + ( r2 - r2’ j2 W) 

we may immediately integrate over the N-3 dimensions denoted by r, to find 

’ See also [I], Eq. (11). There is a misprint in (11) and in (12). The exponents - 3N and 
- 3N + 3 should be - 3N/2 and (- 3N + 3)/2, respectively. 
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1 C’(R’, R)dr, = (47~-~/~r;l jy t-3’2 exp[- t - / r, - rr’ 12/(4t)]dt 

= (2n)-312Kl,2( 1 rl - rl’ j)/(rl ( rl - r; I’/“) 

1 ew[- I rl - rl’ II =- 
4n rl I rl - fl’I 

J C’(R’, R)dr, dr, = [l - exp(- r,‘)]/r,‘. 

(41) 

(42) 

From (42) we see that the normalized density function C is 

Define C3(rl’, r,) to 

c= r1 
rltl - ew(- rl’)l 

GtR’, R) . (43) 

be the normalized density function that corresponds to the 
integral (41), that is, the marginal distribution for rl in C. We may sample C, 
as follows. Set s = 1 rl - rl’ 1; using Eqs. (41) and (42), we may write 

c3 = 4n[l - e:p(- r,‘)] 
exp(- 8) 

* rls 

Let 
v = $(r, + s - r,‘) ; O~v<cc 

24 = fr(s - rl + r,‘) ; 0 5 u 5 rl’ 

w 

(45) 

and use q~ (the azimuth of rl about r,’ as polar axis) as the third variable. Then 

C,dr, = rl’ exp(- 4 
4n[l - exp( - r,‘)] rls 

r12dr, da d9 

exp(- u - V) 
= [l - exp( - rl’)] du dv dGn- (46) 

Thus u, v, q are independent; ~1 is equidistributed over (0,27c), v is exponential on 
(0, co), and u is exponential on (0, r,‘). Each of these distributions is easily 
sampled. The construction of rl given rl’,tp, and 

w = rl’ . rl = 
r;” + r12 - s2 

2r,r,’ 

is standard in the simulation of scattering in transport Monte Carlo [l 11. 
With rl given, it remains to pick r2, or equivalently 

p = r2 - r2’, 
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from the conditional distribution 

Q(P I R’, rd = C(R’, WG(rl’, rd. (47) 

Using N-3 dimensional polar coordinates, e, 52 to represent g, the CJ depender 
of Q has the form 

Q(Q) cc eN-4 /;t-“‘” exp[- t - (s2 + e2)/4t] dt 

(48) 
= 39-4 jr wN-3 exp[- IV+ - (s2 + e2)w2/4] dw . 

Now if w  be drawn from 

and z from 

then 

f(w) cc exp[- w-~ - s2w2/4] 

g(z) cc .z~-~ exp[- .z2/4], 

Q = z/w 

has the density function 

(49) 

(50) 

(51) 

Q(e) = j-y wS(wk(ew) dw 

as required by (48). Note that (50) is the density function for the length of a vector 
z in N-4 dimensions each of whose components has a normal distribution. If we 
sample such a vector then, since p is isotropic, we may obtain the components 
of p from the components of z according to (51). 

To sample fromf(w) as given by (49), note first that 

w-2 + b4W2 = b2[(bw)-2 + (bw)2] 

so that bw is a natural variable to use. Secondly, 

~(X-logX-l)+2<x-2+X2; 

cq = 7.2959. 

(the constant 7 is obtained numerically). Thus 

exp[- b2(r2 + x2)] < exp[- qb(x - log x - 1) - 2b]; 
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with 
n = integer part of qb, 

exp[- b2(x-2 + x2)] < exp[- n(x - log x - 1) - 2b] 

cc x”exp( - nx) 

If x is drawn8 from the p.d.f. Pexp(- nx)/(n!/n”+‘); and if the resulting x is kept 
with probability 

exp[- b2(x-2 + x2) + n(x - log x - 1) + 2b] < 1; 

(and otherwise a new x is generated and tested), the result, when divided by 
b(i.e., s*12) has the distribution (49). 

APPENDIX B 

Reduction of Variance of y2 Computation 

B. 1 Finite Variance 

As explained in Section 3, integrals weighted with y2 may be computed if two 
independent samples of points are available, each having density WY. By connect- 
ing a point R to one point from each sample (call them now R,,R,), and by 
computing two values of the Green’s function, a density y2 is developed. 

For fixed R,, Rz 

jf(Rh~~(R)dR = J’ Go(R, , Wo(& , WUWR 

= G”(;;~~~o,‘;; R) f(R)} T(R / R, , R&R . 
(52) 

T(R 1 R1 , R,) is a density function governing the selection of R; it is conditional 
upon R1 and Rz . Accordingly, the quantity in braces in Eq. (52) is evaluated 
numerically. 

Since T is at our disposal, we seek that form which makes the statistical error 
of the integration as small as possible. The optimum form of T is 

* Cf. [l], Eq. (A. 11) with u == nx. 
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(53) 

for with it the estimator in (52) is a constant and there is no variance. Since this 
constant is the integral to be evaluated we must assume that the form of (53) 
cannot be used. But we may be guided by this in attempting to make the ratio 
Go(R1 , R)Go(R, , R)/T(R / R, , R,) vary as slowly as possible where T itself 
is large. In particular, we must examine the effect of the singularities of Go upon 
the choice of T. 

For small 1 RI - R 1, and in A4 dimensions, 

G,(R, , R) cc 1 R, - R j-(M-2). (54) 

The merits of various sampling functions may be measured by the mean square 
of the estimator: 

Go(% 3 Wo(Rz 3 W-W 

T(R I R, , R,) 1 

2 T(R, R R > dR 
192 - (55) 

Write 
R = RI + R'. 

In the neighborhood of R' = 0, use dR' = (RI)"-ldS2. 
Then the integrand in (55) has limiting behavior proportional to 

If T itself is bounded as R' + 0, the integral of this diverges for M 2 4. Suppose T 
diverges as (R')-m, then 

m<M 

ensures that T itself is integrable, and 

m>M-4 

is required in order that the variance converge. Naturally the same behavior must 
hold for R + R, . 

We have used 
m=M-2 

so that the singularity at R = R, and R = R2 matches the behavior of Go . 
The variance also increases as the points R, and R2 vary, but this does not lead 
to any singularity. 
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Within these constraints, which make the variance finite, a wide choice of T is 
permitted. The form used in the computation was 

T = ’ C 
e2 e2 

R14(R12 + Q”)~ + -R24(R22 + e2)2 + 3 (56) 

where 
e2 = I R1 - R2 12, 

Rz2 = 1 R - &R, - $R3 12, 

and T is a normalizing constant. 
The first two terms of T were arbitrarily picked as easy to sample while having 

the correct singularities and general scale. The third term was added on the basis 
of some numerical evaluation of G,( R, , R)G,(R, , R)/T using several possible 
forms of T. The region around R, = 0 was given particular attention since it 
contributes significantly more than the first two terms of T would indicate. 

B.2 Rotation of Coordinates. 

A second device used to improve the estimate of w2 makes explicit use of the 
rotational invariance of the wave functions being developed. That is, if R, is a 
point obtained in the random walk, and if RI’ is obtained by a three-dimensional 
rotation (of the coordinates of rr and r2 together), then answers may be obtained 
from R,’ as well as R, . In particular, RI’ may be used with any R, to obtain an 
estimate of w2. 

Naturally, no advantage is gained if the rotation which leads to RI’ is isotropic. 
However, for fixed R, , a biassed rotation which tends to minimize the variance 
of the estimator may be used. Let us choose the form of this rotation which 
is required when the overall answer is large, i.e., when 

e = I R,’ - R2 I 

is small. In this limit, e is the only scale factor of length. Then with m = M - 2, 
a normalized T has the limiting form 

T - @-4/(R’ R”)M-2. 

Let H(Q) be a probability density function for e, to be used in biassing &‘. A 
weight of n-l must be used, of course, to ensure correct estimates. Then the mean 
square answer has the form 
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{Go(Rl’, W&U& 2 WY f2(R) dR __- 

T(R) 

Assumingf(R) is regular at Q = 0, the inner integral goes as Q-*. 

V”) -f”(O) J-de n-‘(de-“. (58) 

(57) 

To minimize (P), subject to the constraint that 

it is necessary that 
J-m?> dP = 1, 

me> @c r2, 

which is, in fact, the limiting behavior of the integral J G,(R’, R)G,(R”, R) dR 
itself. 

The (random) rotations upon R1 to produce R1’ were designed, then, to ar- 
range that j Ri’ - R, j = Q should have a density proportional to Q-~. Now each 
vector (e.g., R,) is a juxtaposition of two three-dimensional vectors (sr , tl). 
The kind of rotation permitted leaves s1 , tl , s1 m t, unchanged. It is impossible 
to attain Q = 0, but we attempt to choose parameter of the rotation so as to 
minimize Q within a range governed by the Q-~ variation. Now 

p2 = j s,’ - s2 I2 + 1 t1’ - t, 12. (59) 

It is clear geometrically that e2 is minimized when the four vectors are coplanar. 
Let 6 be the angle between s2 and si’. Then in the plane the configuration is spe- 
cified by setting 

sin 8 = 
sin(0 - 0’) 

(a” + 2a cos(8 - 8’) + 1)“2 (60) 

with 
a = s,s,‘/t,t,’ ; cos 8 = Sl * t1 ; cos 8’ = s2 * t2. 

If we label the vectors so that 01 > 1, 6 is completely determined. This gives the 
direction Q for the optimum sl’. The actual direction is computed by selecting W, 
the cosine of a polar angle with respect to 51 as axis. The density function for UJ 
is arranged to have a width determined from the e-2 behavior. Specifically, let 

a2 
g= - e2Te-2 ae/as =o * 
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For g 5 1.25 make no rotation. Otherwise set 

(2 = g/u + g> > 

W = 1 - 2(1 - (X)5/(1 - cr6) 

with 5 a random number. This choice is arbitrary but is easy to carry out and has 
the general effect required. A weight equal to dco/d6 is attached to the answer 
when obtained. 

An azimuthal angle-here taken to be equidistributed on (0,2n)-completes 
the specification [12] of the direction of sl’. This done, the only remaining variable 
is a second azimuthal angle, p, which fixes t,‘. Again it is a straightforward matter 
to find the value of 97 which minimizes Q and to select a value biassed toward that 
direction. Again, the width of the density function for p is related to e2a2e-2/d~2. 

These changes improved the estimations of J w2 dR and J r2y2 dR in a sub- 
stantial way. 

B.3 Multiple Pairing 

The last scheme aimed at improving the accuracy of the v2 integration was the 
simplest. It consisted in pairing a point derived from the random walk with sev- 
eral points derived from the independent set of points. The fifty last such points 
in each set were saved for this purpose. A new point was then compared with each 
of the saved independent points and if the pair seemed promising for significant 
results after rotation, the entire process was carried through. That is, let 

gsc = o-2 I WI’W2’ I I KS1 - ,212 + (h - t2)“l 9 

psc = mink, , 11 , 
(63) 

where W,’ and W,’ are the weights attached to the points. With probability psc 
the rotation and scoring process was carried out. The numerical coefficient in g,, 
was established experimentally to give a very significant improvement in accuracy 
without a very large increase in computing time. The value used is undoubtedly 
not optimum. 
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